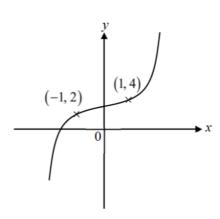
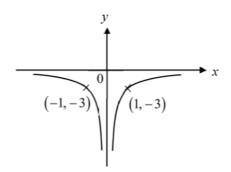
O level E-Math Functions and graph practice questions


4048 SEAB syllabus

Topic/Sub-topics		Content
N6	Functions and graphs	 Cartesian coordinates in two dimensions graph of a set of ordered pairs as a representation of a relationship between two variables linear functions (y = ax + b) and quadratic functions (y = ax² + bx + c) graphs of linear functions the gradient of a linear graph as the ratio of the vertical change to the horizontal change (positive and negative gradients) graphs of quadratic functions and their properties: positive or negative coefficient of x² maximum and minimum points symmetry sketching the graphs of quadratic functions given in the form: y = (x - p)² + q y = -(x - p)² + q y = (x - a)(x - b) y = -(x - a)(x - b)
		 graphs of power functions of the form y = axⁿ, where n = -2, -1, 0, 1, 2, 3, and simple sums of not more than three of these graphs of exponential functions y = ka^x, where a is a positive integer estimation of the gradient of a curve by drawing a tangent

Question 1

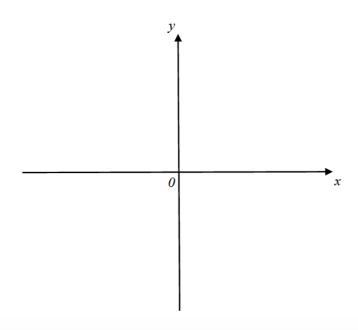

Write down a possible equation for each of the graphs shown below.

(a)

Answer[1]

(b)

Answer[1]

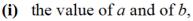

Question 2

(a) Express $6x + x^2 + 15$ in the form of $a + (x+b)^2$.

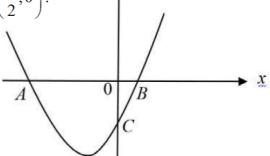
Answer [2]

[2]

(b) Hence sketch the graph of $y = 6x + x^2 + 15$.

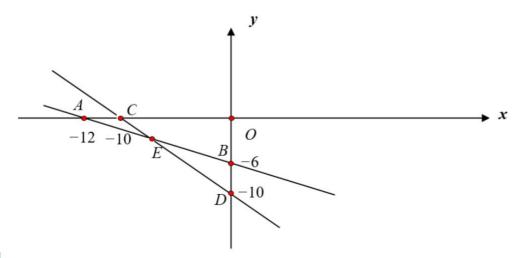


Question 3


The diagram shows part of the graph of $5(y+3) = ax^2 + bx$, where a and b are constants.

The graph cuts the x-axis at $A\left(-2\frac{1}{2},0\right)$ and $B\left(\frac{1}{2},0\right)$.

The graph meets the y-axis at the point C. Find



- (ii) the coordinates of C,
- (iii) the coordinates of the minimum point,
- (iv) the equation of the line of symmetry,
- (v) the area of triangle ABC.

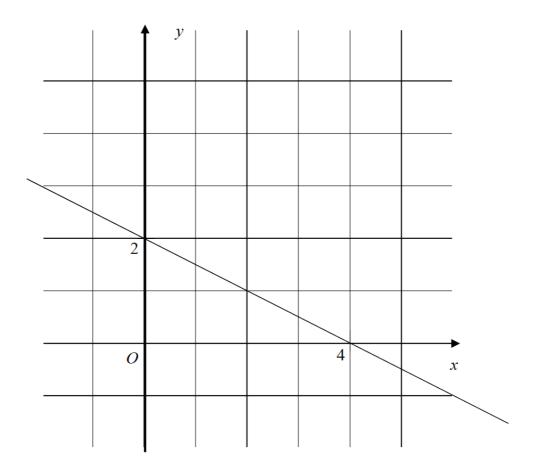
Question 4

In the figure below, the x-intercept and y-intercept of the line AB are -12 and -6 respectively. Both the x-intercept and y-intercept of the line CD are -10.

Find

(a) the equation of the line
$$AB$$
 and CD , [2]

(b) the coordinates of
$$E$$
, [2]


(c) the area of
$$OCEB$$
, [2]

(d) the coordinates of F given that point F lies on AB produced such that
$$AF: FB = 5:3$$
, [2]

(e) find the coordinates of point G where G is the point on the x – axis such that OE is parallel to GD. [2]

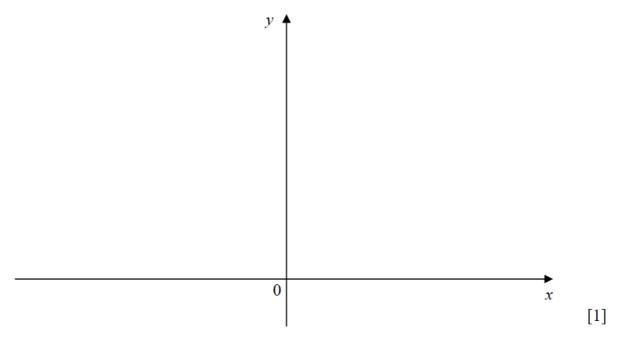
Question 5

The diagram shows the line $y = -\frac{1}{2}x + 2$.

The line $y = -\frac{1}{2}x + 2$ undergoes a translation represented by the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Draw the line after translation, on the diagram above.

[1]

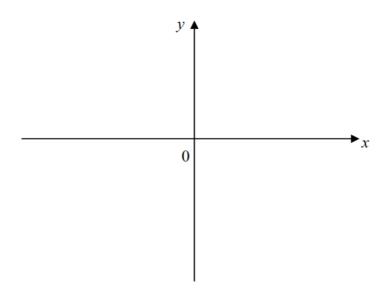

Question 6

The point (-2, 1) lies on the graph $y = \frac{a}{x^2}$.

(a) Find the value of a.

Answer
$$a = \dots [1]$$

(b) Hence, sketch the graph of $y = \frac{a}{x^2}$ on the axes below.

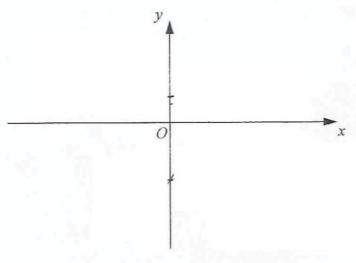

(c) Explain how you can tell from the graph, the number of solutions to the equation $\frac{a}{x^2} = k$ for positive values of k.

Question 7

(a) Express $-x^2 + 4x - 5$ in the form of $a(x+h)^2 + k$.

(b) Hence, sketch the graph of $y = -x^2 + 4x - 5$ on the axes below. Indicate clearly the turning point, the values where the graph crosses the x- and y- axes (if any).

Answer: **(b)**

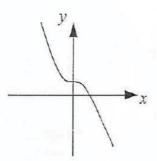


(c) Hence, explain why the equation $-x^2 + 4x - 5 = 0$ has no solution.

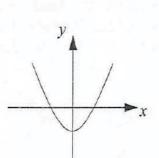
Question 8

Sketch the graph of $y = -(2-x)^2 + 1$ on the axes below.

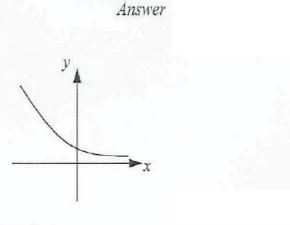
Indicate clearly the values where the graph crosses the x- and y-axes and the coordinates of any turning points.


[2]

Question 9


(a) Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box below.

 $y = x^{2} - 3$ $y = -x^{2} + 3$ $y = 3^{x}$ $y = -x^{3} + 3$ $y = 3^{-x}$ $y = x^{3} + 3$


(i)

(ii)

(iii)

Answer

Answer

[1]

[1]

[1]